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ContextContext and and activityactivity summarysummary

• Context and objective

– ESA Technology Research Programme / MREP

– Investigation of AB strategies aimed to increase level of 
autonomy in such operations

• Key issue is the definition of control strategy to fulfill
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• Key issue is the definition of control strategy to fulfill
aerobraking corridor conditions:

– When and where applying a correction burn

– How to compute a correction burn size

– 1D versus 2D Corridor definition and control variables
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ContextContext and and activityactivity summarysummary

• Corridor Upper boundary definition:

– Natural definition of upper boundary
constraint

– Functional definition of corridor upper
boundaries

– Simplified Solar Array Model (assumptions
and equations)

• Lower boundary definition:
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• Lower boundary definition:

– Minimum peak dynamic pressure

• Examples of control corridor applications:

– Aerobraking on Mars (MSRO): 1-D and 2-D 
corridor

– Aerobraking on Venus(Magellan-like): 2-
D corridor

– Aerobraking on Titan (TSSM): 1-D corridor
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TheThe Aerobraking Control Aerobraking Control CorridorCorridor

• Two boundaries

– Upper boundary to prevent damage of S/C structures

– Lower boundary to guarantee a minimum apocentre 
reduction per pass

• Definition of the corridor requires:

– Choice of the control variables:

• Peak dynamic pressure or heat flux for each drag pass

• Peak solar array temperature for each drag pass
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• Heat load throughout each drag pass (integrated heat flux)

– Choice of the control domain:

• 1-D: Variable corridor based on peak heat flux or dynamic
pressure

• 2-D: Fixed corridor in Peak Heat Flux Vs Heat Load plane

– Upper boundary constraint specification (e.g. maximum
array temperature)

– Lower boundary constraint specification (e.g. maximum AB 
duration)
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HowHow toto fulfillfulfill thethe corridorcorridor conditionsconditions (1)(1)

• Correction Manoeuvres (ABMs) applied at apocentre to
counteract natural evolution of control variables

– Pericentre density varies significantly from orbit to orbit due to
altitude and longitude changes

– DeltaV cost of a given pericentre altitude change is lowest at 
apocentre

• Definition of the “control interval” as:

– Minimum Time Interval between successive ABM decisions
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– Minimum Time Interval between successive ABM decisions

• Every “control interval”:

– Orbit is predicted to check the evolution of the control variables

– If control variables step out of the corridor, an ABM is applied at 
the first apocentre of the control interval

– ABM computed so as to maximize the apocentre altitude
reduction, while respecting the upper boundary constraint
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HowHow toto fulfilfulfil thethe corridorcorridor conditionsconditions (2)(2)

The ABM effect is always that of 
shifting the highest predicted
control variable to the corridor
upper boundary

Case A): Upper boundary violation

Case B): Lower boundary violation
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Case B): Lower boundary violation

Case C): Lower boundary violation with a 
natural dispersion higher than the
corridor width
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CorridorCorridor UpperUpper BoundaryBoundary (1)(1)

• Typically, the most critical structure is the solar array:

• Natural definition of the upper boundary:

– Locus of points (in terms of the control variables) yielding a 
maximum allowable array temperature (taking into account
a safety margin)

• Solar array peak temperature as control variable:

– Non-trivial prediction (very accurate thermal model)

– Complex to measure during mission operations
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– Complex to measure during mission operations

• Surrogate variables are preferred due to their easier
predictability:

– Peak Dynamic Pressure:

– Peak Heat Flux:

– Heat Load per pass:

( ) passdragatmpeakdyn Vp 22/1max ⋅⋅= ρ

( ) passdragatmpeak V 32/1max ⋅⋅=Φ ρ

∫Φ=∆
passdrag

dttQ )(
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CorridorCorridor UpperUpper BoundaryBoundary (2)(2)

• Main factors affecting the peak array temperature are:

– Peak heat flux

– Duration of the pass or orbit geometry

– Integrated heat flux or heat load

• According to the choice of independent variables, two corridor
approaches can be defined:

1-D CORRIDOR APPROACH 2-D CORRIDOR APPROACH
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( )geometryorbitfT peakpeak ,Φ=

invertingand

TTpeak max=

( )geometryorbitTgboundaryupperpeak ,max=Φ

( )QTT peakpeakpeak ∆Φ= ,

maxTTpeak =

( ) max, TQT peakpeak =∆Φ

∆Q takes into account the effects of 
the density profile, thus making 2-D 
corridors more efficient

Orbit geometry can be expressed
as a function of apocentre altitude
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SimplifiedSimplified ThermalThermal ModelModel

• Assumptions:

– Conservative assumptions to simulate Worst Case

– Single Node Thermal Model: no thermal gradient

– Solar Array thermally decoupled from the S/C body

– Convective heat flux coefficient equal to 1

– Normal incidence of incoming fluxes (solar flux ФSun, planetary
albedo and infrared radiation ФPlanet)

– Solar flux applied to most absorbing array surface, albedo and 
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– Solar flux applied to most absorbing array surface, albedo and 
IR radiation applied to back and front surfaces

• Array temperature equation:

– Balance  between incoming fluxes (from radiation and 
convective flux) and outgoing radiative flux

• Initial temperature at drag pass start:

– Equilibrium temperature (dT/dt=0) under environmental
fluxes only (Фconvective=0)

( ) ( ) ( ) 4
212121 ,max TTmC SunPlanetconvectivep ⋅+⋅−Φ⋅+Φ⋅++Φ= εεσαααα&
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CorridorCorridor LowerLower BoundaryBoundary

• Lower boundary purpose:

– Ensure that the apocentre reduction does not take too long to be
accomplished

• How to achieve this?

– Several approaches: guarantee a minimum drag deltaV, 
apocentre altitude reduction or drag peak deceleration

– Peak dynamic pressure is proportional to the drag peak
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– Peak dynamic pressure is proportional to the drag peak
deceleration and hence is a good candidate for the lower
boundary definition

• Definition of lower boundary:

– Locus of points (in terms of the control variables) yielding a 
minimum allowed peak dynamic pressure
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ApplicationApplication: Aerobraking : Aerobraking onon MarsMars

• 1-D corridor upper boundary depends slightly on the 
atmospheric scale height:

– Scale Height: Vertical distance over which the density changes 
by a factor of e

– Conservative scale height value (9km) assumed in simulations

– 1-D upper corridor is more conservative

1-D CORRIDOR 2-D CORRIDOR
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Aerobraking Aerobraking onon MarsMars: 2: 2--D D corridorcorridor simulationsimulation

PERICENTRE ALTITUDE EVOLUTION CONTROL VARIABLES EVOLUTION

Temporal 
evolution

A
e
ro
b
ra
k
in
g
 P
e
ri
ce
n
tr
e
 C
o
n
tr
o
l 
S
tr
a
te
g
ie
s

- 12 -

8th International Planetary Probe Workshop

Portsmouth, Virginia on June 6-10, 2011

© 2011 DEIMOS Space, S.L.U. – www.deimos-space.com 

HEAT FLUX VS APOCENTRE ALTITUDE

Comparison between peak heat
flux values attained with the 2-
D corridor control and the 1-D 
corridor upper boundary
underlines the higher efficiency
of the 2-D approach



A
e
ro
b
ra
k
in
g
 P
e
ri
ce
n
tr
e
 C
o
n
tr
o
l 
S
tr
a
te
g
ie
s

Aerobraking Aerobraking onon MarsMars: 1: 1--D D corridorcorridor simulationsimulation

PERICENTRE ALTITUDE EVOLUTION CONTROL VARIABLE EVOLUTION
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Evolution in the heat flux/ 
heat load plane is more 
conservative with respect to
the 2-D corridor. This
translates into an overall
longer aerobraking duration
(15 days)

HEAT FLUX VS HEAT LOAD
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ApplicationApplication: Aerobraking : Aerobraking onon VenusVenus

PERICENTRE ALTITUDE EVOLUTION CONTROL VARIABLES EVOLUTION

Temporal 
evolution
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PEAK HEAT FLUX AND DYNAMIC 
PRESSURE

ORBITAL PERIOD EVOLUTION

Final orbit altitudes: 
540 km x 200 km

Initial apocentre 
altitude: 8300 km
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Aerobraking Aerobraking onon TitanTitan: 1: 1--D D CorridorCorridor SimSim. (1). (1)

1-D CONTROL CORRIDOR

PERICENTRE ALTITUDE EVOLUTION

• Different high level constraint: 

– Minimum duration of 60 days
(Science phase)

– Maximum heat flux of 2500W/m2

(High Gain Antenna constraint)

– Saturn’s gravity perturbation
suggests that corridor width be the
widest at high apocentre altitudes
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Saturn’s Third Body gravity induces
orbit to orbit changes of pericentre
altitude of up to 80 km
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Aerobraking Aerobraking onon TitanTitan: 1: 1--D D CorridorCorridor SimSim. (2). (2)

PEAK HEAT FLUX VS APOCENTRE 
ALTITUDE

ORBITAL PERIOD EVOLUTION

Orbital period reduction
is highest at the
beginning of the

aerobraking due to the
1-D corridor shape
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PEAK HEAT FLUX &
DYNAMIC PRESSURE 

EVOLUTION
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ConclusionsConclusions

• New approach to control corridor correction ABMs:

– Selection of surrogate variables: peak heat flux or dynamic pressure
(1-D), peak heat flux and heat load (2-D)

– Prediction of surrogate control variables throughout a selectable
interval of time, named “control interval”

– ABM size computed so as to yield the highest apocentre altitude
reduction while complying with structural constraints (applicable to
both onboard and ground architectures)

• 1-D and 2-D corridor definition:
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• 1-D and 2-D corridor definition:

– Simplified and conservative solar array model

– Corridor algorithms to compute both boundaries for each
apocentre altitude contained in the aerobraking range

• Examples of application on Mars, Venus and Titan:

– Mars simulation has showed the higher efficiency of 2-D corridor

– Proved applicability of the corridor concept to Venus  Environment

– Titan simulation has showed the versatility of 1-D corridors


